DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Subrata Majumdar, ${ }^{*}$ Kalyan Kumar Dey and Mohd. Altab Hossain
Department of Mathematics
University of Rajshahi, Rajshahi-6205, Bangladesh
*kkdmath@yahoo.com

Received 07.06.2008
Accepted 16.7.2011

Abstract

In this paper direct product and wreath product of transformation semigroups have been defined, and associativity of both the products and distributivity of wreath product over direct product have been established.

Keywords: Transformation semigroup, Direct product, Wreath product

1. Introduction

Direct product and wreath product of transformation groups are well known (see [1,3,5]). We have generalized these products to transformation semigroups. We have proved that both direct product and wreath product are associative, and that wreath product is distributive over direct product.

2. Direct Product and Wreath Product

Definition 2.1

Let S be a semigroup and X a non-empty set. S will be called a transformation semigroup on X if there is a mapping $\phi: S \times X \rightarrow X$, for which we write
$\phi(s, x)=s(x)$ and which satisfies the condition
$\left(s_{1} s_{2}\right)(x)=s_{1}\left(s_{2}(x)\right)$, for each $x \in X$ and for each $s_{1}, s_{2} \in S$.
If S is a monoid, i.e., if S has an identify element 1 , then the mapping ϕ is further assumed to satisfy $1(x)=x$, for each $x \in X$.

For every transformation semigroup S on X, there is a homomorphism $\psi: S \rightarrow E(X)$, the semigroup of all mappings $f: X \rightarrow X$, given by $\psi(s)=f$, where $f(x)=s(x) . E(X)$ is usually called the full transformation semigroup on X.

Let X_{1} and X_{2} be two non-empty disjoint sets and let S_{1} and S_{2} be transformation semigroups on X_{1} and X_{2} respectively.

Definition 2.2

The direct product of S_{1} and S_{2}, written $S_{1} \times S_{2}$, is defined as a transformation semigroup on $X_{1} \cup X_{2}$, the elements of $S_{1} \times S_{2}$ being the ordered pairs (s_{1}, s_{2}), $s_{1} \in S_{1}, s_{2} \in S_{2}$, with (s_{1}, $\left.s_{2}\right)\left(x_{1}\right)=s_{1}\left(x_{1}\right),\left(s_{1}, s_{2}\right)\left(x_{2}\right)=s_{2}\left(x_{2}\right)$, for each $x_{1} \in X_{1}, x_{2} \in X_{2}$. The multiplication in $S_{1} \times S_{2}$ is component-wise. It is easily seen that $S_{1} \times S_{2}$ is indeed a transformation semigroup. If S_{1} and S_{2} are finite, the number of elements of $S_{1} \times S_{2}$ is obviously the product of the numbers of elements of S_{1} and S_{2}.

Theorem 2.1

If S_{1}, S_{2}, S_{3} are transformation semigroups on X_{1}, X_{2}, X_{3}, then $\left(S_{1} \times S_{2}\right) \times S_{3} \cong S_{1} \times\left(S_{2} \times S_{3}\right)$ is a transformation semigroup on $X_{1} \cup X_{2} \cup X_{3}$.

Proof

Obviously, the map $\left(\left(s_{1}, s_{2}\right), s_{3}\right) \rightarrow\left(s_{1},\left(s_{2}, s_{3}\right)\right)$ is an isomorphism of semigroups $\left(S_{1} \times S_{2}\right)$ $\times S_{3}$ and $S_{1} \times\left(S_{2} \times S_{3}\right)$. To see that it is also so as transformation semigroups, we note as a typical case, $\left(\left(s_{1}, s_{2}\right), s_{3}\right)\left(x_{1}\right)=\left(s_{1}, s_{2}\right)\left(x_{1}\right)=s_{1}\left(x_{1}\right)$, and also, $\left(s_{1},\left(s_{2}, s_{3}\right)\right)\left(x_{1}\right)=s_{1}\left(x_{1}\right)$.

Definition 2.3

The wreath product of S_{1} with S_{2}, written $S_{1} \varsigma S_{2}$ is the transformation semigroup on $X_{1} \times$ X_{2} consisting of elements θ on $X_{1} \times X_{2}$ which are given by $\theta: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ such that $\theta\left(x_{1}, x_{2}\right)=\left(\mathrm{s}_{1, \mathrm{x}_{2}}\left(\mathrm{x}_{1}\right), \mathrm{s}_{2}\left(\mathrm{x}_{2}\right)\right)$, with s_{2} in S_{2} and each $\mathrm{s}_{1, \mathrm{x}_{2}}$ in $S_{1}, \mathrm{~s}_{1, \mathrm{x}_{2}}, \mathrm{~s}_{1, \mathrm{x}_{2}}$ being an element of S_{1} determined by x_{2}.

It follows from the definition that if $S_{1}, S_{2}, X_{1}, X_{2}$ are finite, then
$\left|S_{1} \varsigma S_{2}\right|=\left|S_{1}\right|^{\left|X_{2}\right|} \times\left|S_{2}\right|$, where $\left|S_{i}\right|$ and $\left|X_{2}\right|$ denote the numbers of elements of $S_{\mathrm{i}}(\mathrm{i}=1,2)$ and X_{2} respectively.

3. Wreath Product as a Direct Product

An equivalent description of wreath product in terms of direct products is given below:

Theorem 3.1

If $\left(S_{1}, X_{1}\right)$ and $\left(S_{2}, X_{2}\right)$ are transformation semigroups, then $\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right) \cong\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\bigcup_{x_{2} \in X_{2}}^{\cup} X_{1, x_{2}}\right) \cup X_{2}\right)$, where each $x_{2} \in X_{2}, S_{1, x_{2}} \cong S_{1}$ and $\left|X_{1, x_{2}}\right|=X_{1}$.

Proof

Let $\theta \in\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right)$. Then $\theta\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)$, for some $\sigma_{2} \in S_{2}$ and $\sigma_{1, x_{2}} \in S_{1}$, where $\sigma_{1, x_{2}}$ is in S_{1} and depends on x_{2}.

Define $\Phi:\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right) \rightarrow\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\underset{x_{2} \in X_{2}}{\cup} X_{1, x_{2}}\right) \cup X_{2}\right)$
by $(\Phi(\theta))\left(x_{1, x_{2}}\right)=\sigma_{1, x_{2}}\left(x_{1}\right),(\Phi(\theta))\left(x_{2}\right)=\sigma_{2}\left(x_{2}\right)$.
Next, let $\bar{\theta} \in\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\underset{x_{2} \in X_{2}}{\cup} X_{1, x_{2}}\right) \cup X_{2}\right)$. Then

$$
\bar{\theta}\left(x_{1, x_{2}}\right)=\bar{\sigma}_{1, x_{2}}\left(x_{1, x_{2}}\right)=\bar{\sigma}_{2}\left(x_{2}\right) . \text {, for some }
$$

$\bar{\sigma}_{1, x_{2}} \in S_{1}, \bar{\sigma}_{1, x_{2}}$ depending on x_{2} and $\bar{\sigma}_{2} \in S_{2}$.
Define $\Psi:\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\bigcup_{x_{2} \in X_{2}} X_{1, x_{2}}\right) \cup X_{2}\right) \rightarrow\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right)$ by

$$
(\Psi(\bar{\theta}))\left(x_{1}, x_{2}\right)=\left(\bar{\sigma}_{1, x_{2}}\left(x_{1}\right), \bar{\sigma}_{2}\left(x_{2}\right)\right) .
$$

If $\theta^{\prime} \in\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right)$ is given by

$$
\theta\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}^{\prime}\left(x_{1}\right), \sigma_{2}^{\prime}\left(x_{2}\right)\right) \text {, where } \sigma_{2}^{\prime} \in S_{2} \text { and } \sigma_{1, x_{2}}^{\prime} \in S_{1} \text { and depends on } x_{2},
$$

then $\varphi\left(\theta^{\prime}\right)\left(x_{1, x_{2}}\right)=\sigma_{1, x_{2}}^{\prime}\left(x_{1}\right)$

$$
\varphi\left(\theta^{\prime}\right)\left(x_{2}\right)=\sigma_{2}^{\prime}\left(x_{2}\right)
$$

and $\left(\theta \theta^{\prime}\right)\left(x_{1, x_{2}}\right)=\left(\left(\sigma_{1, x_{2}} \sigma_{1, x_{2}}^{\prime}\right)\left(x_{1}\right),\left(\sigma_{2} \sigma_{2}^{\prime}\right)\left(x_{2}\right)\right)$.
Hence $\varphi\left(\theta \theta^{\prime}\right)\left(X_{1, x_{2}}\right)=\left(\left(\sigma_{1, x_{2}} \sigma_{1, x_{2}}^{\prime}\right)\left(x_{1}\right)\right.$

$$
\left.\varphi\left(\theta \theta^{\prime}\right)\left(x_{2}\right)=\left(\sigma_{2} \sigma_{2}^{\prime}\right)\left(x_{2}\right)\right) .
$$

Also, $\left(\varphi(\theta) \varphi\left(\theta^{\prime}\right)\right)\left(x_{1, x_{2}}\right)=\left(\left(\sigma_{1, x_{2}} \sigma_{1, x_{2}}^{\prime}\right)\left(x_{1}\right)\right.$

$$
\left(\varphi(\theta) \varphi\left(\theta^{\prime}\right)\right)\left(x_{2}\right)=\left(\left(\sigma_{2} \sigma_{2}^{\prime}\right)\left(x_{2}\right)\right.
$$

$\therefore \Phi(\theta \theta)=\Phi \Psi(\theta) \Phi(\theta)$.
Thus φ is a homomorphism.
If $\bar{\theta}^{\prime} \in\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\bigcup_{x_{2} \in X_{2}} X_{1, x_{2}}\right) \cup X_{2}\right)$ is given by
$\bar{\theta}^{\prime}\left(x_{1, x_{2}}\right)=\sigma_{1, x_{2}}^{\prime}\left(x_{1, x_{2}}\right)=\sigma_{2}^{\prime}\left(x_{2}\right)$
then $\varphi\left(\overline{\theta^{\prime}}\right)\left(x_{1}, x_{2}\right)=\left(\overline{\sigma^{\prime}, x_{2}}\left(x_{1}\right),{\overline{\sigma^{\prime}}}_{2}\left(x_{2}\right)\right)$.
Also, $\left(\bar{\theta} \overline{\theta^{\prime}}\right)\left(x_{1, x_{2}}\right)=\left(\bar{\sigma}_{1, x_{2}} \overline{\sigma_{1, x_{2}}^{\prime}}\right)\left(x_{1, x_{2}}\right)$

$$
\left(\overline{\theta \theta \theta^{\prime}}\right)\left(x_{2}\right)=\left(\bar{\sigma}_{2} \overline{\sigma^{\prime}}\right)\left(x_{2}\right)
$$

Hence $\left(\psi\left(\theta \theta^{\prime}\right)\right)\left(x_{1}, x_{2}\right)=\left(\left(\bar{\sigma}_{1, x_{2}}{\overline{\sigma_{1, x_{2}}^{\prime}}}\left(x_{1, x_{2}}\right), \bar{\sigma}_{2}{\overline{\sigma^{\prime}}}_{2}\left(x_{2}\right)\right)\right.$ and
$\left(\psi(\theta) \psi\left(\theta^{\prime}\right)\right)\left(x_{1}, x_{2}\right)=\left(\left(\bar{\sigma}_{1, x_{2}}{\overline{\sigma_{1, x_{2}}^{\prime}}}\left(x_{1}\right), \bar{\sigma}_{2}{\overline{\sigma^{\prime}}}_{2}\left(x_{2}\right)\right)\right.$ so that $\therefore \Psi\left(\theta \theta^{\prime}\right)=\Psi(\theta) \Psi\left(\theta^{\prime}\right)$ i.e., Ψ is a homomorphism .
Now
$(\varphi \psi)(\bar{\theta})\left(x_{1, x_{2}}\right)=\varphi(\psi(\bar{\theta}))\left(x_{1 . x_{2}}\right)=\bar{\sigma}_{1, x_{2}}\left(x_{1}\right)$,
and $\left((\varphi \psi)(\bar{\theta})\left(x_{2}\right)=\varphi(\psi(\bar{\theta}))\left(x_{2}\right)=\bar{\sigma}_{2}\left(x_{2}\right)\right)$
$\therefore(\Phi \Psi)(\theta)=\theta$.
$\therefore \varphi \psi=\left(\left(\underset{x_{2} \in X_{2}}{\times} S_{1, x_{2}}\right) \times S_{2},\left(\underset{x_{2} \in X_{2}}{\bigcup} X_{1, x_{2}}\right) \cup X_{2}\right)$.
Also, $(\Psi \Phi)(\theta)\left(x_{1}, x_{2}\right)=\Psi(\Phi(\theta))\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)=\theta\left(x_{1}, x_{2}\right)$.
$\therefore \Psi \Phi(\theta)=\theta$, and so $\therefore \Psi \Phi=1_{\left(S_{15} S_{2}, X_{1} \times X_{21}\right)}$.
Thus Φ and Ψ are inverses of each other. Therefore, both Φ and Ψ are isomorphisms.
The following remarks are very significant and useful.

Remarks

(i) If $\left(S_{1}, X_{1}\right)$ and $\left(S_{2}, X_{2}\right)$ are transformation semigroups with $S_{2}=\left\{1_{x_{2}}\right\}$, then
$\left(S_{1} \times S_{2}, X_{1} \cup X_{2}\right)$ and $\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right)$ may be identified with $\left(S_{1}, X_{1}\right)$ and $\left(\left(\prod_{x_{2} \in X_{2}} S_{1, x_{2}}\right), \bigcup_{x_{2} \in X_{2}}^{\bigcup} X_{1, x_{2}}\right)$ respectively, ignoring the trivial action of S_{2} on X_{2}. Here, each $S_{1, x_{2}} \cong S_{1}$ and each $X_{1, x_{2}}$ is in 1-1 correspondence with X_{1} with $x_{1, x_{2}} \leftrightarrow x_{1}$, and $s_{1, x_{2}}\left(x_{1, x_{2}}\right)=s_{1}\left(x_{1}\right)$. Thus, in this case, $S_{1} \times S_{2} \cong S_{1}$ and $S_{1} \varsigma S_{2} \cong\left(\prod_{x_{2} \in X} S_{1, x_{2}}\right)$ (direct product) as semigroups.
(ii) If $S_{1}=\left\{1_{x_{1}}\right\}$, then both $\left(S_{1} \times S_{2}, X_{1} \cup X_{2}\right)$ and $\left(S_{1} \varsigma S_{2}, X_{1} \times X_{2}\right)$ may be identified with $\left(S_{2}, X_{2}\right)$ since $S_{1, x_{2}}=S_{1, x_{2}^{\prime}}=1_{x_{2}}$, for each pair of elements $x_{2}, x_{2}^{\prime} \in X_{2}$.
(iii) If S and S^{\prime} are transformation semigroups on the same set X, then $\left(S_{1} \varsigma S^{\prime}, X \times X\right)$ may be identified with $\left(\left(\prod_{x \in X} S_{x}\right) \times S^{\prime}, \bigcup_{x \in X} X_{x} \cup X\right)$. As semigroups, $S \zeta S^{\prime} \cong\left(\prod_{x \in X} S_{x}\right) \times S^{\prime}$.

If, in particular, $S=S^{\prime}$ and X is finite with $|X|=\mathrm{n}$, then $S \varsigma S \cong S \times \mathrm{S} \times \mathrm{S} \times \cdots \cdots \times \mathrm{S} \times \mathrm{S}$ ($n+1$ copies).

4. Associativity of Wreath Products

Theorem 4.1

If $\left(S_{1}, X_{1}\right),\left(S_{2}, X_{2}\right),\left(S_{3}, X_{3}\right)$ are three transformation semigroups, then $\left(\left(S_{1} \varsigma S_{2}\right) \varsigma S_{3}\right.$, $\left.\left(X_{1} \times X_{2}\right) \times X_{3}\right) \cong\left(S_{1} \varsigma\left(S_{2} \varsigma S_{3}\right),\left(X_{1} \times\left(X_{2} \times X_{3}\right)\right.\right.$.

Proof

Define $\varphi:\left(S_{1} \varsigma S_{2}\right) \varsigma S_{3} \rightarrow S_{1} \varsigma\left(S_{2} \varsigma S_{3}\right)$ and

$$
\psi: S_{1} \varsigma\left(S_{2} \varsigma S_{3}\right) \rightarrow\left(S_{1} \varsigma S_{2}\right) \varsigma S_{3} \text { as follows: }
$$

If $\theta \in\left(\left(S_{1} \varsigma S_{2}\right) \varsigma S_{3}\right)$ is given by $\theta\left(\left(x_{1}, x_{2}\right), x_{3}\right)=\left(\alpha_{12, x_{3}}, \sigma_{3}\left(x_{3}\right)\right)$ where

$$
\begin{aligned}
& \alpha_{12, x_{3}} \in S_{1} \varsigma S_{2}, \text { depends on } x_{3} \text { and is defined by } \\
& \alpha_{12, x_{3}}\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2, x_{3}}}\left(x_{1}\right), \sigma_{2, x_{3}}\left(x_{2}\right)\right) \text { so that } \\
& \theta\left(\left(x_{1}, x_{2}\right), x_{3}\right)=\left(\left(\left(\sigma_{1, x_{2, x_{3}}}\left(x_{1}\right), \sigma_{2, x_{3}}\left(x_{2}\right)\right), \sigma_{3}\left(x_{3}\right)\right) \text {, then } \varphi(\theta)\right. \text { is given by } \\
& \varphi(\theta)\left(x_{1},\left(x_{2}, x_{3}\right)\right)=\left(\left(\left(\sigma_{1, x_{2}, x_{3}}\left(x_{1}\right), \sigma_{2, x_{3}}\left(x_{2}\right)\right), \sigma_{3}\left(x_{3}\right)\right) .\right.
\end{aligned}
$$

Also, if $\bar{\theta} \in S_{1} \varsigma\left(S_{2} \varsigma S_{3}\right)$ is given by

$$
\bar{\theta}\left(x_{1},\left(x_{2}, x_{3}\right)\right)=\left(\bar{\sigma}_{1,\left(x_{2}, x_{3}\right)}\left(x_{1}\right), \bar{\sigma}_{23}\left(x_{2}, x_{3}\right)\right)=\left(\bar{\sigma}_{1, x_{2, x_{3}}}\left(x_{1}\right),\left(\bar{\sigma}_{2, x_{3}}\left(x_{2}\right), \bar{\sigma}_{3}\left(x_{3}\right)\right)\right)
$$

then $\psi(\theta)=\left(\left(\bar{\sigma}_{1, x_{2, x_{3}}}\left(x_{1}\right), \bar{\sigma}_{2, x_{3}}\left(x_{2}\right), \bar{\sigma}_{3}\left(x_{3}\right)\right)\right.$.
If θ^{\prime} and $\bar{\theta}$ are defined similarly with the σ s and σ^{\prime} s replacing by σ^{\prime} s and $\bar{\sigma}$'s then $\theta \theta^{\prime}$ and $\theta^{\prime} \theta$ are given by

$$
\begin{aligned}
& (\theta \theta)\left(\left(x_{1}, x_{2}\right), x_{3}\right)=\theta\left(\left(\left(\sigma_{1, x_{2, x_{3}}}^{\prime}\left(x_{1}\right), \sigma_{2, x_{3}}^{\prime}\left(x_{2}\right)\right), \sigma_{3}^{\prime}\left(x_{3}\right)\right)\right. \\
& =\left(\left(\left(\sigma_{1, x_{2} x_{3}} \sigma_{1, x_{2, x_{3}}^{\prime}}\right)\left(x_{1}\right),\left(\sigma_{2, x_{3}} \sigma_{2, x_{3}}^{\prime}\right)\left(x_{2}\right)\right),\left(\sigma_{3} \sigma_{3}^{\prime}\right)\left(x_{3}\right)\right)
\end{aligned}
$$

and $\left.\left.\overline{(} \theta \bar{\theta}^{\prime}\right)\left(\left(x_{1}, x_{2}\right), x_{3}\right)\right)=\bar{\theta}\left(\left(\overline{\sigma_{1, x_{2, x_{3}}}^{\prime}}\left(x_{1}\right), \overline{\left(\sigma_{2, x_{3}}^{\prime}\right.}\left(x_{2}\right), \overline{\sigma_{3}^{\prime}}\left(x_{3}\right)\right)\right.$

$$
=\left(\left(\bar{\sigma}_{1, x_{2} x_{3}}{\overline{\sigma^{\prime}}}_{1, x_{2, x_{3}}}\left(x_{1}\right), \overline{(\sigma}_{2, x_{3}}{\overline{\sigma^{\prime}}}_{2, x_{3}}\left(x_{2}\right), \bar{\sigma}_{3}{\overline{\sigma^{\prime}}}_{3}\left(x_{3}\right)\right)\right.
$$

It is clear that $\varphi(\theta \theta)=\varphi(\theta) \varphi\left(\theta^{\prime}\right)$ and $\psi(\theta \bar{\theta})=\psi(\theta) \psi(\theta)$, i.e, φ and ψ are homomorphisms. Also it is evident from the definitions of φ and ψ that they are inverses of each other. Hence both φ and ψ are isomorphisms.

5. Distributivity of Wreath Products over Direct Products

The following isomorphism theorem may be viewed as showing that wreath product of the stated type is distributive over as a direct product that arises in a natural manner.

Theorem 5.1

Let $\left(S_{1}, X_{1}\right),\left(S_{2}, X_{2}\right)$ and $\left(S_{3}, X_{3}\right)$ be three transformation semigroups. Then
$\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right) \cong\left(\left(S_{1} \varsigma S_{2}\right) \times\left(S_{1} \varsigma S_{3}\right),\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times X_{3}\right)\right)$.

Proof

Define
$\varphi:\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right) \rightarrow\left(\left(S_{1} \varsigma S_{2}\right) \times\left(S_{1} \varsigma S_{3}\right),\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times X_{3}\right)\right)$
by $\varphi(\theta)=\left(\theta^{\prime}, \theta^{\prime \prime}\right)$
where, if $\theta\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right),\left(\sigma_{2}, \sigma_{3}\right)\left(x_{2}\right)\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)$,
and $\theta\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\left(\sigma_{1, x_{3}}\left(x_{1}\right),\left(\sigma_{2}, \sigma_{3}\right)\left(x_{3}\right)\right)=\left(\sigma_{1, x_{3}}\left(x_{1}\right), \sigma_{3}\left(x_{3}\right)\right)$,
then $\left(\theta^{\prime}, \theta^{\prime \prime}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\theta^{\prime}\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)$
$\left(\theta^{\prime}, \theta^{\prime \prime}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\theta^{\prime \prime}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\left(\sigma_{1, x_{3}}\left(\mathrm{x}_{1}\right), \sigma_{3}\left(\mathrm{x}_{3}\right)\right)$
Also define
$\left.\psi \cdot\left(S_{1} \varsigma S_{2}\right) \times\left(S_{1} \varsigma S_{3}\right),\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times X_{3}\right)\right) \rightarrow\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right)$
by $\psi\left(\theta, \theta^{\prime}\right)=\theta^{\prime \prime}$ where if $\left(\theta, \theta^{\prime}\right)\left(x_{1}, x_{2}\right)=\theta^{\prime}\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)$,
$\left(\theta, \theta^{\prime}\right)\left(x_{1}, x_{3}\right)=\theta^{\prime}\left(x_{1}, x_{3}\right)=\left(\sigma_{1, x_{3}}\left(\mathrm{x}_{1}\right), \sigma_{3}\left(\mathrm{x}_{3}\right)\right)$,
then $\theta^{\prime \prime}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\sigma_{1, x_{2}}\left(\mathrm{x}_{1}\right),\left(\sigma_{2}, \sigma_{3}\right)\left(\mathrm{x}_{2}\right)=\left(\sigma_{1, x_{2}}\left(\mathrm{x}_{1}\right), \sigma_{2}\left(\mathrm{x}_{2}\right)\right)\right.$
$\theta^{\prime \prime}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\left(\sigma_{1, \mathrm{x}_{3}}\left(\mathrm{x}_{1}\right),\left(\sigma_{2}, \sigma_{3}\right)\left(\mathrm{x}_{3}\right)=\left(\sigma_{1, \mathrm{x}_{3}}\left(\mathrm{x}_{1}\right), \sigma_{3}\left(\mathrm{x}_{3}\right)\right)\right.$.
It follows from (1) - (8) that
$\varphi \psi=1_{\left(\left(S_{1} \varsigma S_{2}\right) \times\left(S_{1} \varsigma S_{3}\right),\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times X_{3}\right)\right)}$
and $\psi \varphi=1_{\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right)}$
Thus both φ and ψ are 1-1 and onto.
Now, let $\theta, \quad \bar{\theta} \in\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right)$ by given by

$$
\begin{aligned}
& \left.\theta\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\sigma_{1, x_{2}}\left(\mathrm{x}_{1}\right), \sigma_{2}\left(\mathrm{x}_{2}\right)\right) \\
& \left.\theta\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\sigma_{1, x_{3}}\left(\mathrm{x}_{1}\right), \sigma_{3}\left(\mathrm{x}_{3}\right)\right) \text { where } \sigma_{2} \in S_{2}, \sigma_{3} \in \mathrm{~S}_{3}, \text { and } \sigma_{1, x_{2}}, \sigma_{1, x_{3}} \in S_{1}
\end{aligned}
$$

the former being determined by x_{2} and the latter by x_{3} and

$$
\left.\left.\bar{\theta}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\overline{\sigma_{1, x_{2}}}\left(\mathrm{x}_{1}\right), \sigma_{2}\left(\mathrm{x}_{2}\right)\right), \quad \bar{\theta}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\overline{\sigma_{1, x_{3}}}\left(\mathrm{x}_{1}\right), \sigma_{2}\left(\mathrm{x}_{3}\right)\right)
$$

where $\quad \bar{\sigma}_{2} \in \mathrm{~S}_{2}, \quad \bar{\sigma}_{3} \in \mathrm{~S}_{3}$, and $\overline{\sigma_{1, x_{2}}}, \overline{\sigma_{1, x_{3}}} \in S_{1}$, the former being determined by x_{2} and the latter by x_{3}.

Then $(\theta \bar{\theta})\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\sigma_{1, x_{2}} \overline{\sigma_{1, x_{2}}}\left(x_{1}\right), \sigma_{2} \bar{\sigma}_{2}\left(x_{2}\right)\right)$,

$$
(\theta \bar{\theta})\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\left(\sigma_{1, x_{3}} \bar{\sigma}_{1}, x_{3}^{\left(x_{1}\right)}, \sigma_{3} \bar{\sigma}_{3}\left(x_{3}\right)\right) .
$$

Since, $\varphi(\theta)=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right) \operatorname{and} \varphi(\bar{\theta})=\left(\bar{\theta}_{1}^{\prime}, \bar{\theta}_{2}^{\prime}\right)$,
where $\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)\left(x_{1}, x_{2}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right)\right)$,
$\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)\left(x_{1}, x_{3}\right)=\left(\sigma_{1, x_{2}}\left(x_{1}\right), \sigma_{3}\left(x_{3}\right)\right)$,
and $\left({\overline{\theta^{\prime}}}_{1},{\overline{\theta^{\prime}}}_{2}\right)\left(x_{1}, x_{2}\right)=\left(\bar{\sigma}_{1, x_{2}}\left(x_{1}\right), \bar{\sigma}_{2}\left(x_{2}\right)\right)$
$\left({\overline{\theta^{\prime}}}_{1},{\overline{\theta^{\prime}}}_{2}\right)\left(x_{1}, x_{3}\right)=\left(\bar{\sigma}_{1, x_{3}}\left(x_{1}\right), \bar{\sigma}_{3}\left(x_{3}\right)\right)$.
We have $\varphi(\theta \quad \bar{\theta})=\varphi(\theta) \varphi(\bar{\theta})$.
Hence φ is a homomorphism. Therefore φ is an isomorphism. Thus
$\left(S_{1} \varsigma\left(S_{2} \times S_{3}\right), X_{1} \times\left(X_{2} \cup X_{3}\right)\right) \cong\left(\left(S_{1} \varsigma S_{2}\right) \times\left(S_{1} \varsigma S_{3}\right),\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times X_{3}\right)\right.$.
Application of direct product and wreath product of transformation groups and transformation semigroups appear in [5,6].

REFERENCES

1. Hall, M., Group Theory, Macmillan Co. New York, 1964.
2. Karpuz, E. G.and Cevik, A. S., The word and generalized word problem for semigroups under wreath products, Bull. Math. Soc. Sci. Math. Roumanie Tome 52, 100, 2 (2009) 151-160.
3. Maclane, S. and Birkhoff, G., Algebra. Macmillan Co. New York, 1968.
4. Majumdar, S., The auotomorphism group of a mapping, M.Sc. Thesis, Univ. of Birmingham, 1965.
5. Meldrum, J. D. P., Wreath products of groups and semigroups, Longman, 1995.
6. Robertson, E. F., Ruskuc, N. and Thomson, M. R., On finite generation and other finiteness conditions for wreath products of semigroups, Comm. Algebra, 30 (2002) 3851-3873.
