# DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

#### Subrata Majumdar, <sup>\*</sup>Kalyan Kumar Dey and Mohd. Altab Hossain

Department of Mathematics University of Rajshahi, Rajshahi-6205, Bangladesh \*kkdmath@yahoo.com

Received 07.06.2008

Accepted 16.7.2011

## ABSTRACT

In this paper direct product and wreath product of transformation semigroups have been defined, and associativity of both the products and distributivity of wreath product over direct product have been established.

Keywords: Transformation semigroup, Direct product, Wreath product

## **1. Introduction**

Direct product and wreath product of transformation groups are well known (see [1,3,5]). We have generalized these products to transformation semigroups. We have proved that both direct product and wreath product are associative, and that wreath product is distributive over direct product.

## 2. Direct Product and Wreath Product

#### **Definition 2.1**

Let S be a semigroup and X a non-empty set. S will be called a **transformation** semigroup on X if there is a mapping  $\phi$ : S×X→X, for which we write

 $\phi(s, x) = s(x)$  and which satisfies the condition

 $(s_1 s_2)(x) = s_1(s_2(x))$ , for each  $x \in X$  and for each  $s_1, s_2 \in S$ .

If *S* is a monoid, i.e., if *S* has an identify element 1, then the mapping  $\phi$  is further assumed to satisfy 1(x) = x, for each  $x \in X$ .

For every transformation semigroup *S* on *X*, there is a homomorphism  $\psi : S \to E(X)$ , the semigroup of all mappings  $f : X \to X$ , given by  $\psi(s) = f$ , where f(x) = s(x). E(X) is usually called the **full transformation semigroup** on *X*.

Let  $X_1$  and  $X_2$  be two non-empty disjoint sets and let  $S_1$  and  $S_2$  be transformation semigroups on  $X_1$  and  $X_2$  respectively.

### **Definition 2.2**

The **direct product** of  $S_1$  and  $S_2$ , written  $S_1 \times S_2$ , is defined as a transformation semigroup on  $X_1 \cup X_2$ , the elements of  $S_1 \times S_2$  being the ordered pairs  $(s_1, s_2), s_1 \in S_1, s_2 \in S_2$ , with  $(s_1, s_2)(x_1) = s_1(x_1), (s_1, s_2)(x_2) = s_2(x_2)$ , for each  $x_1 \in X_1, x_2 \in X_2$ . The multiplication in  $S_1 \times S_2$  is component-wise. It is easily seen that  $S_1 \times S_2$  is indeed a transformation semigroup. If  $S_1$ and  $S_2$  are finite, the number of elements of  $S_1 \times S_2$  is obviously the product of the numbers of elements of  $S_1$  and  $S_2$ .

#### Theorem 2.1

If  $S_1$ ,  $S_2$ ,  $S_3$  are transformation semigroups on  $X_1$ ,  $X_2$ ,  $X_3$ , then  $(S_1 \times S_2) \times S_3 \cong S_1 \times (S_2 \times S_3)$  is a transformation semigroup on  $X_1 \cup X_2 \cup X_3$ .

#### Proof

Obviously, the map  $((s_1, s_2), s_3) \rightarrow (s_1, (s_2, s_3))$  is an isomorphism of semigroups  $(S_1 \times S_2) \times S_3$  and  $S_1 \times (S_2 \times S_3)$ . To see that it is also so as transformation semigroups, we note as a typical case,  $((s_1, s_2), s_3)(x_1) = (s_1, s_2)(x_1) = s_1(x_1)$ , and also,  $(s_1, (s_2, s_3))(x_1) = s_1(x_1)$ .

## **Definition 2.3**

The wreath product of  $S_1$  with  $S_2$ , written  $S_1 \,\zeta \, S_2$  is the transformation semigroup on  $X_1 \times X_2$  consisting of elements  $\theta$  on  $X_1 \times X_2$  which are given by  $\theta: X_1 \times X_2 \to X_1 \times X_2$  such that  $\theta(x_1, x_2) = (s_{1,x_2}(x_1), s_2(x_2))$ , with  $s_2$  in  $S_2$  and each  $s_{1,x_2}$  in  $S_1, s_{1,x_2}, s_{1,x_2}$  being an element of  $S_1$  determined by  $x_2$ .

It follows from the definition that if  $S_1$ ,  $S_2$ ,  $X_1$ ,  $X_2$  are finite, then

 $|S_1 \zeta S_2| = |S_1|^{|X_2|} \times |S_2|$ , where  $|S_i|$  and  $|X_2|$  denote the numbers of elements of  $S_i$  (i=1,2) and  $X_2$  respectively.

### 3. Wreath Product as a Direct Product

An equivalent description of wreath product in terms of direct products is given below:

## Theorem 3.1

If  $(S_1, X_1)$  and  $(S_2, X_2)$  are transformation semigroups, then

$$(S_1 \varsigma S_2, X_1 \times X_2) \cong \left( \left( \underset{x_2 \in X_2}{\times} S_{1,x_2} \right) \times S_2, \left( \underset{x_2 \in X_2}{\cup} X_{1,x_2} \right) \cup X_2 \right), \text{ where each } x_2 \in X_2 \text{ , } S_{1,x_2} \cong S_1$$
  
and  $\left| X_{1,x_2} \right| = X_1$ .

#### Proof

Let  $\theta \in (S_1 \subseteq S_2, X_1 \times X_2)$ . Then  $\theta(x_1, x_2) = (\sigma_{1,x_2}(x_1), \sigma_2(x_2))$ , for some  $\sigma_2 \in S_2$  and  $\sigma_{1,x_2} \in S_1$ , where  $\sigma_{1,x_2}$  is in  $S_1$  and depends on  $x_2$ .

Direct Product and Wreath Product

Define 
$$\boldsymbol{\Phi}: (S_{I} \subseteq S_{2}, X_{I} \times X_{2}) \rightarrow \left( \left( \sum_{x_{2} \in X_{2}}^{\times} S_{1, x_{2}} \right) \times S_{2}, \left( \bigcup_{x_{2} \in X_{2}}^{\cup} X_{1, x_{2}} \right) \cup X_{2} \right)$$
  
by  $(\boldsymbol{\Phi}(\boldsymbol{\theta})(x_{1, x_{2}}) = \sigma_{1, x_{2}}(x_{1}), (\boldsymbol{\Phi}(\boldsymbol{\theta})(x_{2}) = \sigma_{2}(x_{2}).$   
Next, let  $\overline{\boldsymbol{\theta}} \in \left( \left( \sum_{x_{2} \in X_{2}}^{\times} S_{1, x_{2}} \right) \times S_{2}, \left( \bigcup_{x_{2} \in X_{2}}^{\cup} X_{1, x_{2}} \right) \cup X_{2} \right)$ . Then  
 $\overline{\boldsymbol{\theta}}(x_{1, x_{2}}) = \overline{\sigma}_{1, x_{2}}(x_{1, x_{2}}) = \overline{\sigma}_{2}(x_{2}).$  for some  
 $\overline{\sigma}_{1, x_{2}} \in S_{1}, \overline{\sigma}_{1, x_{2}}$  depending on  $x_{2}$  and  $\overline{\sigma}_{2} \in S_{2}.$   
Define  $\mathcal{\Psi}: \left( \left( \sum_{x_{2} \in X_{2}}^{\times} S_{1, x_{2}} \right) \times S_{2}, \left( \bigcup_{x_{2} \in X_{2}}^{\cup} X_{1, x_{2}} \right) \cup X_{2} \right) \rightarrow (S_{I} \subseteq S_{2}, X_{I} \times X_{2})$  by  
 $(\boldsymbol{\Psi}(\overline{\boldsymbol{\theta}})(x_{1, x_{2}}) = (\overline{\sigma}_{1, x_{2}}(x_{1}), \overline{\sigma}_{2}(x_{2})).$   
If  $\boldsymbol{\theta}' \in (S_{I} \subseteq S_{2}, X_{I} \times X_{2})$  is given by  
 $\boldsymbol{\theta}(x_{I, x_{2}}) = (\sigma_{1, x_{2}}(x_{1}), \sigma_{2}'(x_{2})),$  where  $\sigma_{2}' \in S_{2}$  and  $\sigma_{1, x_{2}}' \in S_{I}$  and depends on  $x_{2}$ ,  
then  $\boldsymbol{\varphi}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\overline{\sigma}_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\boldsymbol{\varphi}(\boldsymbol{\theta}')(x_{2}) = \sigma_{1, x_{2}}'(x_{1}), (\sigma_{2}\sigma_{2}')(x_{2})).$   
Hence  $\boldsymbol{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\boldsymbol{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\boldsymbol{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $(\boldsymbol{\varphi}(\boldsymbol{\theta})\boldsymbol{\varphi}(\boldsymbol{\theta}'))(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\boldsymbol{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\boldsymbol{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta})(x_{1, x_{2}}) = ((\sigma_{1, x_{2}}, \sigma_{1, x_{2}}')(x_{1}))$   
 $\vec{\varphi}(\boldsymbol{\theta}(\boldsymbol{\theta}) = \boldsymbol{\Phi} \boldsymbol{\Psi}(\boldsymbol{\theta})\boldsymbol{\Phi}(\boldsymbol{\theta}).$   
Thus  $\boldsymbol{\varphi}$  is a homomorphism.  
If  $\overline{\boldsymbol{\theta}'} \in \left( \left( \sum_{x_{2} \leq x_{2}}, S_{1, x_{2}} \right) \times S_{2}, \left( \sum_{x_{2} \in x_{2}}, X_{1, x_{2}} \right) \cup X_{2} \right)$  is given by  
 $\overline{\boldsymbol{\theta}'}(x_{1, x_{2}}) = \sigma_{1, x_{2}}'(x_{1}, \overline{\sigma'}^{-}(x_{2})).$   
Also,  $(\overline{\boldsymbol{\theta}}\overline{\boldsymbol{\theta}'})(x_{1, x_{2}}) = (\overline{\boldsymbol{\sigma}'}(x_{2}), (\overline{\boldsymbol{\sigma}'}(x_{2})).$   
Also,  $(\overline{\boldsymbol{\theta}}\overline{\boldsymbol{\theta}'})(x_{1, x_{2}}) = (\overline{\boldsymbol{\sigma}'}(x_{2}))(x_{1, x_{2}})$ 

Hence  $(\Psi(\theta\theta'))(x_1, x_2) = ((\overline{\sigma}_{1,x_2} \overline{\sigma'}_{1,x_2} (x_{1,x_2}), \overline{\sigma}_2 \overline{\sigma'}_2 (x_2))$  and  $(\Psi(\theta)\Psi(\theta'))(x_1, x_2) = ((\overline{\sigma}_{1,x_2} \overline{\sigma'}_{1,x_2} (x_1), \overline{\sigma}_2 \overline{\sigma'}_2 (x_2))$  so that  $\therefore \Psi(\theta\theta') = \Psi(\theta)\Psi(\theta')$  i.e.,  $\Psi$  is a homomorphism . Now  $(\varphi\Psi)(\overline{\theta})(x_{1,x_2}) = \varphi(\Psi(\overline{\theta}))(x_{1,x_2}) = \overline{\sigma}_{1,x_2} (x_1),$ and  $((\varphi\Psi)(\overline{\theta})(x_2) = \varphi(\Psi(\overline{\theta}))(x_2) = \overline{\sigma}_2 (x_2))$   $\therefore (\Phi\Psi)(\theta) = \theta.$   $\therefore \varphi\Psi = \left( \left( \sum_{x_2 \in X_2} S_{1,x_2} \right) \times S_2, \left( \bigcup_{x_2 \in X_2} X_{1,x_2} \right) \bigcup X_2 \right).$ Also,  $(\Psi\Phi)(\theta)(x_1,x_2) = \Psi(\Phi(\theta))(x_1,x_2) = (\sigma_{1,x_2} (x_1), \sigma_2 (x_2)) = \theta(x_1,x_2).$  $\therefore \Psi\Phi(\theta) = \theta$ , and so  $\therefore \Psi\Phi = 1_{(S_1 \in S_2, X_1 \times X_{21})}.$ 

Thus  $\Phi$  and  $\Psi$  are inverses of each other. Therefore, both  $\Phi$  and  $\Psi$  are isomorphisms. The following remarks are very significant and useful.

### Remarks

(i) If  $(S_1, X_1)$  and  $(S_2, X_2)$  are transformation semigroups with  $S_2 = \{1_{x_2}\}$ , then

 $(S_1 \times S_2, X_1 \cup X_2)$  and  $(S_1 \subseteq S_2, X_1 \times X_2)$  may be identified with  $(S_1, X_1)$  and  $\left(\left(\prod_{x_2 \in X_2} S_{1,x_2}\right), \bigcup_{x_2 \in X_2} X_{1,x_2}\right)$  respectively, ignoring the trivial action of  $S_2$  on  $X_2$ . Here, each  $S_{1,x_2} \cong S_1$  and each  $X_{1,x_2}$  is in 1-1 correspondence with  $X_1$  with  $x_{1,x_2} \leftrightarrow x_1$ , and  $s_{1,x_2}(x_{1,x_2}) = s_1(x_1)$ . Thus, in this case,  $S_1 \times S_2 \cong S_1$  and  $S_1 \subseteq S_2 \cong \left(\prod_{x_2 \in X} S_{1,x_2}\right)$  (direct product) as semigroups.

(ii) If  $S_I = \{1_{x_1}\}$ , then both  $(S_I \times S_2, X_1 \cup X_2)$  and  $(S_I \subseteq S_2, X_1 \times X_2)$  may be identified with  $(S_2, X_2)$  since  $s_{1,x_2} = s_{1,x_2'} = 1_{x_2}$ , for each pair of elements  $x_2, x'_2 \in X_2$ .

(iii) If *S* and *S'* are transformation semigroups on the same set *X*, then  $(S_I \subseteq S', X \times X)$  may be identified with  $\left( \left( \prod_{x \in X} S_x \right) \times S', \bigcup_{x \in X} X_x \cup X \right)$ . As semigroups,  $S \subseteq S' \cong \left( \prod_{x \in X} S_x \right) \times S'$ .

If, in particular, S = S' and X is finite with |X| = n, then  $S \subseteq S \cong \underbrace{S \times S \times S \times \cdots \times S \times S}_{(n+1 \text{ copies})}$ .

Direct Product and Wreath Product

### 4. Associativity of Wreath Products

### Theorem 4.1

If  $(S_1, X_1)$ ,  $(S_2, X_2)$ ,  $(S_3, X_3)$  are three transformation semigroups, then  $((S_1 \zeta S_2) \zeta S_3, \zeta S_3)$  $(X_1 \times X_2) \times X_3) \cong (S_1 \varsigma (S_2 \varsigma S_3), (X_1 \times (X_2 \times X_3)).$ 

## Proof

Define  $\varphi: (S_1 \zeta S_2) \zeta S_3 \rightarrow S_1 \zeta (S_2 \zeta S_3)$  and

$$\forall : S_1 \varsigma (S_2 \varsigma S_3) \rightarrow (S_1 \varsigma S_2) \varsigma S_3$$
 as follows

 $\psi : S_1 \zeta (S_2 \zeta S_3) \rightarrow (S_1 \zeta S_2) \zeta S_3$  as follows: If  $\theta \in ((S_1 \zeta S_2) \zeta S_3)$  is given by  $\theta((x_1, x_2), x_3) = (\alpha_{12, x_3}, \sigma_3(x_3))$  where

$$\alpha_{12,x_3} \in S_1 \subseteq S_2, \text{ depends on } x_3 \text{ and is defined by}$$
  

$$\alpha_{12,x_3}(x_1, x_2) = (\sigma_{1,x_{2,x_3}}(x_1), \sigma_{2,x_3}(x_2)) \text{ so that}$$
  

$$\theta((x_1, x_2), x_3) = (((\sigma_{1,x_{2,x_3}}(x_1), \sigma_{2,x_3}(x_2)), \sigma_3(x_3)), \text{ then } \varphi(\theta) \text{ is given by}$$
  

$$\varphi(\theta)(x_1, (x_2, x_3)) = (((\sigma_{1,x_2,x_3}(x_1), \sigma_{2,x_3}(x_2)), \sigma_3(x_3)).$$

Also, if  $\overline{\theta} \in S_1 \subseteq (S_2 \subseteq S_3)$  is given by

$$\overline{\theta}(x_{1,1}(x_{2},x_{3})) = (\overline{\sigma}_{1,(x_{2},x_{3})}(x_{1}), \overline{\sigma}_{23}(x_{2},x_{3})) = (\overline{\sigma}_{1,x_{2,x_{3}}}(x_{1}), (\overline{\sigma}_{2,x_{3}}(x_{2}), \overline{\sigma}_{3}(x_{3}))),$$

then  $\psi(\theta) = ((\overline{\sigma}_{1,x_{2,x_{3}}}(x_{1}), \overline{\sigma}_{2,x_{3}}(x_{2}), \overline{\sigma}_{3}(x_{3})).$ 

If  $\theta'$  and  $\overline{\theta}$  are defined similarly with the  $\sigma$ 's and  $\sigma$ 's replacing by  $\sigma$ 's and  $\overline{\sigma}$ 's then  $\theta\theta'$ and  $\theta' \theta$  are given by

$$(\theta \theta')((x_1, x_2), x_3) = \theta(((\sigma'_{1,x_{2,x_3}}(x_1), \sigma'_{2,x_3}(x_2)), \sigma'_{3}(x_3)))$$
$$=(((\sigma_{1,x_{2,x_3}}\sigma'_{1,x_{2,x_3}})(x_1), (\sigma_{2,x_3}\sigma'_{2,x_3})(x_2)), (\sigma_3\sigma'_3)(x_3))$$

and  $(\overline{\theta} \ \overline{\theta})((x_1, x_2), x_3) = \overline{\theta}(((\overline{\sigma'}_{1, x_2, x_1}(x_1), (\overline{\sigma'}_{2, x_2}(x_2), \overline{\sigma'}_{3}(x_3))))$ 

$$=((\overline{\sigma}_{1,x_{2}x_{3}}\overline{\sigma'}_{1,x_{2,x_{3}}}(x_{1}),\overline{(\sigma}_{2,x_{3}}\overline{\sigma'}_{2,x_{3}}(x_{2}),\overline{\sigma}_{3}\overline{\sigma'}_{3}(x_{3}))$$

It is clear that  $\varphi(\theta\theta') = \varphi(\theta)\varphi(\theta')$  and  $\psi(\theta \ \overline{\theta'}) = \psi(\theta)\psi(\theta')$ , i.e,  $\varphi$  and  $\psi$  are homomorphisms. Also it is evident from the definitions of  $\varphi$  and  $\psi$  that they are inverses of each other. Hence both  $\varphi$  and  $\psi$  are isomorphisms.

## 5. Distributivity of Wreath Products over Direct Products

The following isomorphism theorem may be viewed as showing that wreath product of the stated type is distributive over as a direct product that arises in a natural manner.

## Theorem 5.1

Let 
$$(S_1, X_1)$$
,  $(S_2, X_2)$  and  $(S_3, X_3)$  be three transformation semigroups. Then

$$(S_1 \varsigma (S_2 \times S_3), X_1 \times (X_2 \cup X_3)) \cong ((S_1 \varsigma S_2) \times (S_1 \varsigma S_3), (X_1 \times X_2) \cup (X_1 \times X_3)).$$

# Proof

Define

$$\varphi: (S_1 \varsigma (S_2 \times S_3), X_1 \times (X_2 \cup X_3)) \to ((S_1 \varsigma S_2) \times (S_1 \varsigma S_3), (X_1 \times X_2) \cup (X_1 \times X_3))$$
  
by  $\varphi(\theta) = (\theta', \theta'')$  (1)

where, if 
$$\theta(x_1, x_2) = (\sigma_{1, x_2}(x_1), (\sigma_2, \sigma_3)(x_2)) = (\sigma_{1, x_2}(x_1), \sigma_2(x_2)),$$
 (2)

and 
$$\theta(x_1, x_3) = (\sigma_{1, x_3}(x_1), (\sigma_2, \sigma_3)(x_3)) = (\sigma_{1, x_3}(x_1), \sigma_3(x_3))$$
, (3)

then 
$$(\theta', \theta'')(x_1, x_2) = \theta'(x_1, x_2) = (\sigma_{1, x_2}(x_1), \sigma_2(x_2))$$
 (4)

$$(\theta', \theta'')(\mathbf{x}_1, \mathbf{x}_3) = \theta''(\mathbf{x}_1, \mathbf{x}_3) = (\sigma_{1, x_3}(\mathbf{x}_1), \sigma_3(\mathbf{x}_3))$$
(5)

## Also define

$$\psi(S_1 \subseteq S_2) \times (S_1 \subseteq S_3), (X_1 \times X_2) \cup (X_1 \times X_3)) \to (S_1 \subseteq (S_2 \times S_3), X_1 \times (X_2 \cup X_3))$$
  
by  $\psi(\theta, \theta') = \theta''$  where if  $(\theta, \theta') (x_1, x_2) = \theta'(x_1, x_2) = (\sigma_{1, x_2} (x_1), \sigma_2 (x_2)),$ 

$$(\theta, \theta')(x_1, x_3) = \theta'(x_1, x_3) = (\sigma_{1, x_3}(x_1), \sigma_3(x_3)),$$
(6)

then 
$$\theta''(\mathbf{x}_1, \mathbf{x}_2) = (\sigma_{1, x_2}(\mathbf{x}_1), (\sigma_2, \sigma_3)(\mathbf{x}_2) = (\sigma_{1, x_2}(\mathbf{x}_1), \sigma_2(\mathbf{x}_2))$$
 (7)

$$\theta''(\mathbf{x}_1, \mathbf{x}_3) = (\sigma_{1, x_3}(\mathbf{x}_1), (\sigma_2, \sigma_3)(\mathbf{x}_3) = (\sigma_{1, x_3}(\mathbf{x}_1), \sigma_3(\mathbf{x}_3)).$$
(8)

It follows from (1) - (8) that

$$\varphi \psi = \mathbf{1}_{((S_1 \in S_2) \times (S_1 \in S_3), (X_1 \times X_2) \cup (X_1 \times X_3))}$$

and 
$$\psi \phi = 1_{(S_1 \in (S_2 \times S_3), X_1 \times (X_2 \cup X_3))}$$

Thus both  $\varphi$  and  $\psi$  are 1-1 and onto.

Now, let  $\theta$ ,  $\overline{\theta} \in (S_1 \varsigma (S_2 \times S_3), X_1 \times (X_2 \cup X_3))$  by given by

$$\theta(\mathbf{x}_1, \mathbf{x}_2) = \sigma_{1, x_2}(\mathbf{x}_1), \sigma_2(\mathbf{x}_2))$$

$$\theta(x_1, x_3) = \sigma_{1,x_3}(x_1), \sigma_3(x_3)$$
 where  $\sigma_2 \in S_2, \sigma_3 \in S_3$ , and  $\sigma_{1,x_2}, \sigma_{1,x_3} \in S_1$ 

the former being determined by  $x_2$  and the latter by  $x_3$  and

$$\overline{\theta}(\mathbf{x}_1, \mathbf{x}_2) = \overline{\sigma_{1, x_2}}(\mathbf{x}_1), \, \sigma_2(\mathbf{x}_2)), \quad \overline{\theta}(\mathbf{x}_1, \mathbf{x}_2) = \overline{\sigma_{1, x_3}}(\mathbf{x}_1), \, \sigma_2(\mathbf{x}_3))$$

Direct Product and Wreath Product

where  $\overline{\sigma}_2 \in S_2$ ,  $\overline{\sigma}_3 \in S_3$ , and  $\overline{\sigma}_{1,x_2}$ ,  $\overline{\sigma}_{1,x_3} \in S_{I_1}$  the former being determined by  $x_2$  and the latter by  $x_3$ .

Then 
$$(\theta \ \overline{\theta})(\mathbf{x}_1, \mathbf{x}_2) = (\sigma_{1,x_2} \overline{\sigma_{1,x_2}}(x_1), \sigma_2 \overline{\sigma_2}(x_2)),$$
  
 $(\theta \ \overline{\theta})(\mathbf{x}_1, \mathbf{x}_3) = (\sigma_{1,x_3} \overline{\sigma_1}, x_3^{(x_1)}, \sigma_3 \overline{\sigma_3}(x_3)).$   
Since,  $\phi(\theta) = (\theta'_1, \theta'_2)$  and  $\phi(\overline{\theta}) = (\overline{\theta}'_1, \overline{\theta}'_2),$   
where  $(\theta'_1, \theta'_2)(x_1, x_2) = (\sigma_{1,x_2}(x_1), \sigma_2(x_2)),$ 

 $(\theta_1', \theta_2') \ (x_1, x_3) = (\sigma_{1, x_2}(x_1), \sigma_3(x_3)),$ and  $(\overline{\theta'}_1, \overline{\theta'}_2) \ (x_1, x_2) = (\overline{\sigma}_{1, x_2}(x_1), \overline{\sigma}_2(x_2))$ 

 $(\overline{\theta'}_1,\overline{\theta'}_2)(x_1,x_3) = (\overline{\sigma}_{1,x_3}(x_1),\overline{\sigma}_3(x_3)).$ 

We have  $\varphi(\theta \ \overline{\theta}) = \varphi(\theta) \varphi(\overline{\theta})$ .

Hence  $\varphi$  is a homomorphism. Therefore  $\varphi$  is an isomorphism. Thus

$$(S_1 \varsigma (S_2 \times S_3), X_1 \times (X_2 \cup X_3)) \cong ((S_1 \varsigma S_2) \times (S_1 \varsigma S_3), (X_1 \times X_2) \cup (X_1 \times X_3).$$

Application of direct product and wreath product of transformation groups and transformation semigroups appear in [5,6].

### REFERENCES

- 1. Hall, M., Group Theory, Macmillan Co. New York, 1964.
- 2. Karpuz, E. G.and Cevik, A. S., The word and generalized word problem for semigroups under wreath products, Bull. Math. Soc. Sci. Math. Roumanie Tome 52, 100, 2 (2009) 151-160.
- 3. Maclane, S. and Birkhoff, G., Algebra. Macmillan Co. New York, 1968.
- 4. Majumdar, S., The auotomorphism group of a mapping, M.Sc. Thesis, Univ. of Birmingham, 1965.
- 5. Meldrum, J. D. P., Wreath products of groups and semigroups, Longman, 1995.
- 6. Robertson, E. F., Ruskuc, N. and Thomson, M. R., On finite generation and other finiteness conditions for wreath products of semigroups, Comm. Algebra, 30 (2002) 3851-3873.